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ABSTRACT 

Theoretical results for nucleation and growth controlled transformations indicate that a 
non-isothermal generalization is only possible along the lines of the isokinetic hypothesis, i.e., 
the invariance of the rate equation under any thermal conditions. The alternative formalism, 
i.e., the general use of the isothermal law and the corresponding modification of the rate 
equation under non-isothermal conditions, is found to be incorrect. Different methods for the 
evaluation of kinetic parameters are compared, taking into account even thermal lag correc- 
tions. 

It is illustrated by experimental results for oxide, chalcogenide and metallic glasses that all 
of the non-isothermal methods that yield kinetic parameters in good agreement with the 
appropriate isothermal results are easily derived from the usual rate equation. 

INTRODUCTION 

The crystallization of different glassy materials has been extensively 
investigated by various non-isothermal methods. It is evident that the 
kinetics of crystallization are important from the points of view of both 
fundamental and applied research. The theory and practice of this evalua- 
tion, however, are far from being universally accepted. 

The general question of whether the usual rate equation is applicable to 
non-isothermal studies [l-5] is also relevant for crystallization. Apparently 
unrelated to this problem, many researchers [6-lo] freely applied the equa- 
tions derived for the isothermal case by Johnson and Mehl, Avrami, 
Kolmogorov and Yerofeev to non-isothermal conditions. When the time 
derivative of these JMAKY kinetics were calculated, new methods were 
suggested [ll-131 for the calculation of kinetic parameters that are signifi- 
cantly different from those generally applied. Despite a detailed criticism of 
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these attempts [14-321, the exact mathematical equivalence of the modified 
rate equation and the use of isothermal laws under non-isothermal condi- 
tions were not generally recognized 133,341. 

In this paper, some results on the theory of nucleation and growth 
controlled transformation are reviewed to show that a non-isothermal gener- 
alization is only possible along the lines recommended by the isokinetic 
hypothesis, i.e., the invariance of the rate equation. If this treatment is to be 
believed, however, it must be shown that those evaluation methods which 
claim good experimental verification are consistent with this framework 
even if originally suggested on the basis of now obsolete theories. 

THEORY OF NUCLEATION-GROWTH KINETICS UNDER GENERAL THERMAL 
CONDITIONS 

Crystallization is a special case of the nucleation and grain growth 
controlled solid-state transformation processes, the theory of which is well 
known [35-381. If an embryo of the transformed phase nucleates at moment 
7 and grows thereafter isotropically in three dimensions with a linear 
momentary growth rate Y( t’) in moment t’, then its volume u at moment t 

(where 7 < t’ -c t) is 

u(7, t)= y [ [Y( t’)dt’13 

When the possible overlap of the grains is neglected, the so-called extended 
volume V,,, is calculated: 

J&= V N,u(O, t) + J~~(T)u(T, t)dT] I 
where NO is the initial number of nuclei and I = I( T) is the nucleation rate 
per unit volume. As the change of the real transformed volume, dV,, and 
that of the extended volume, dV&,, is related by 

dVt= I-; dl/,,, 
( 1 

the basic nucleation-growth equation for the transformed fraction (Y = V/V 
is 

-ln(l - a) = F I3 + p)[lry(t9dtj3d~} 

This equation is evidently valid under any thermal conditions. Up to this 
point no assumptions have been made regarding the origin of the time 
dependence of I and Y, so it could easily include also the implicit time 
dependences Y[T( t’)] and I[ T( r)]. An important limitation of this equa- 
tion, however, stems from the use of eqn. (3) which describes a completely 
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random overlap of growing crystallites. Surface crystallization is a clear case 
where this assumption must not be valid. Owing to the possible absence of 
overlap, this case is also easily treated even under general thermal condi- 
tions. 

For any shape where the volume is expressed as the product of a 
geometrical factor and the cube of a characteristic distance, the calculation 
easily yields 

1 - (1 - &3 = lfk[T(t’)]dt’ (5) 
0 

which is a clear example of nth order chemical reaction kinetics. Having 
established that the classical methods of kinetic parameter evaluation are to 
be used in this instance, we might return to our central problem: evaluation 
of kinetic parameters based on eqn. (4). 

The two terms in eqn. (4) determine the two limiting processes of major 
interest under isothermal conditions when Y = constant: 

(a) the growth of frozen-in nuclei (No + 0) without thermal nucleation 
(I=o): 

[ - ln(l - a)] 1’3 = kt (6) 

(b) homogeneous thermal nucleation (No = 0, I = constant # 0): 

[-ln(l--)]“4=kt (7) 

It is worth noting that in a number of instances, e.g., for the time-depen- 
dent transient nucleation where I( 7) = IoeW7’Q or for the diffusion-limited 
growth where the characteristic distance is proportional to t112, a form 
analogous to eqns. (6) and (7): 

[-ln(l-(w)]““=kt (8) 

holds as an acceptable approximation [39], where the exponent n gives an 
indication of the mode of transformation. This is the physical background of 
the wide applicability of the JMAKY equation under isothermal conditions. 

The same treatment is also applicable to the non-isothermal case taking 
into account that now 

y( t’) = yoepEJRT(“) 

The generalization of case (a) is very easy, yielding 

[ -ln(l - a)]1’3 = i’k[T(t’)]dt’ 

where 

(9) 

(10) 

k(T) = Zge-Es/RT (11) 
zg = Y, (4nNo/3y3 (12) 
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For case (b) the calculation has already been carried out [40,41] by evaluat- 
ing the double integral in eqn. (4) by the usual methods, where T = To + /3t 

I( T) = Zne-E”/RT(7) 
(13) 

The result is 

[ -ln(l - ‘~)]l’~ = z(Z,,Z,,E,,E,)s( ~)*e-~/“=JbR[T(r’)]dr’ 

where 

E= (E, + 3E,)/4 (15) 
i = ge- @RT(t) 

(16) 

It should be clear from eqns. (10) and (14) that the non-isothermal equiv- 
alent of the widely used isothermal JMAKY relation [eqn. (S)] is 

[ -ln(l - a)]l’” = J’k[T(t’)]dt’ 07) 
0 

as also shown by Henderson [42,43] and Meisel and Cote [44]. Some 
particular points following from the preceding analysis are worth noting: 

(A) The time derivatives of eqns. (8) and (17) are the same, i.e., the rate 
equation 

$ = nZ(l - (y)[ -ln(l - a)]Ye-FIRT (18) 
bears the same form for both isothermal and dynamic cases. 

(B) The isothermal transformed fraction can naturally be written either as 

a = I - e-(kr)” 
@a) 

or as 

(y = 1 - e-kt” 
(19b) 

as the two equations use only a different definition of the activation energy. 
If 

k = koe-E/Rr (2Oa) 
and 

k, = ko.ePE*/RT (2Ob) 
then 

E,=nE (21) 

However, the frequently used [45,46] differential form 

da 
- = k,n(l - a)t”-’ 
dt (22) 



117 

is not valid [51,52], as 

-ln(l -a) = (/‘k[r(t’)]df’)l+ Jrk, [T(t’)]t’“-‘dt’ (23) 
0 0 

This fact was originally observed by De Bruijn et al. [40] and was recently 
re-emphasized by Louis and Garcia-Cordovilla [47-491 and by Kasap and 
Yuhasz [108]. The correct form of eqn. (22) where the rate equation is 
formulated as a function of T and a only is expressed as [51,52] 

da n-l 

- = nk’,/“(l - a)[ -ln(l - a)] n 
dt (24) 

Later we shall return to establish that this freedom in defining the activation 
energy does not influence the comparison of isothermally and non-isother- 
mally determined kinetic parameters. 

(C) It is evident from eqn. (17) that the isothermal form of the JMAKY 
relation [eqn. (S)] is not valid under non-isothermal conditions. The relation- 
ship derived [eqn. (17)] clearly shows that (Y depends on the whole T(t) 
path. In this way the theory of nucleation and growth controlled transforma- 
tion is completely incompatible with the existence of an (Y = a( t, T) func- 
tion that would predict (Y if only the end-point (t, T) is specified, i.e., with 
the assumption that we shall call the alternative formalism. 

The fact that the transformed fraction is a path function does not give 
any problems when a is determined for a properly defined thermal route. 
For example, with linear heating [50-521 

T= T,+pt 

Equation (17) yields 

d4 = [ -141 - 41 l/n_ 25 - pRPww (25) 

where p( E/RT) denotes the exponential integral. Equation (25) is no doubt 
a functional relationship, i.e., for linear heating the cy = 8,,( P,T) function 
exists. 

In this way the theory of nucleation and growth controlled transforma- 
tions makes an unambiguous choice between the two methods of kinetic 
parameter evaluation. The usual method is based on the isokinetic hypothe- 
sis, i.e., on the invariance of the rate equation 

2 = k(T)f(a) 

under any thermal conditions. The transformed fraction is 

g(a) = lag = l’k[T(t’)ldt’ 

which yields g(a) = kt only under isothermal conditions. This hypothesis, 

(26) 

(27) 
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even if not exactly valid [43] (causing here only a deviation of z from its 

isothermally calculated value), is a reasonable approximation also in our 
case. 

The alternative formalism is based on the existence of an a = B(T, t) 
function. A significant modification of the rate equation is calculated under 
non-isothermal conditions [l--5]. The preceding analysis therefore excludes 
the applicability of this formalism to nucleation and growth controlled 
transformations. The exact mathematical equivalence of the modified rate 
equation and the use of the isothermal law under non-isothermal conditions 
[6-lo] will be shown in a separate paper [34]. 

EVALUATION OF KINETIC PARAMETERS FROM THERMOANALYTICAL EX- 
PERIMENTS 

The evaluation of linear heating experiments is based on eqn. (25), where 
two different approximations of the exponential integral, namely the Doyle 
approximation 

1,,,,(E/RT) = In p(E/RT) = -5.33 - 1.056 + 3% 

and the asymptotic equation 

will be used. The first term in eqn. (29) means typically a few per cent 
accuracy of p(E/RT). It should be understood, however, that the use of 
eqn. (28) for estimating p(E/RT) itself is irrelevant, as the 3% error in the 
exponent has very serious consequences, as shown in Table 1. 

This is why the form of the rate equation proposed by Matusita et al. [53]: 

* = K(1 - (Y)P” exp( -1.05gm) 
dt 

is considered to be too rough an approximation to be recommended. The 
actual evaluation methods proposed [53], however, utilize only ln(da/dt) 

TABLE 1 

Effect of a 3% error in the Doyle equation for calculating p( E/RT) 

I Doyle( E/RT) = - 5.33 - l.OS( E/RT); with an error of f 32, and E/RT = 40 

In P( E/W 

p(E/RT) 
P/Pequation 

+35% Equation 

- 48.75 - 47.33 
6.74~10-~* 2.79x1O-2’ 
0.241 1 

-3% 

- 45.91 
1.15 x lo-*O 
4.14 
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and In g(a) and in this way are also easily derived in the correct formalism: 
when the logarithm of eqn. (25) is connected with eqn. (28) then 

ln[ -ln(l - a)] 5: n In $ - 

results. If the logarithm of 
(29), then the result is [54] 

Z” 
lng =ln - 

/ 

P”-l 
-$T+o I-a,ln + 

1 

T\ 

0 ! 

1.05% + c (30) 

eqn. (18) is combined with either eqn. (28) or 

(31) 

It is evident that these plots might reveal only nE. If n and E are to be 
determined separately from a single thermogram, then the three-term ver- 
sion of eqn. (29) is applied to yield 

In 
[ 

- ln( 1 - a)l’n 
T2 ]=ln[g(l-%)]-A (32) 

The separate determination of n and E in this way requires a very high 
precision if the variation of terms whose order of magnitude is In T (found 
to be almost negligible with the usual precision) is to be significantly 
established in addition to terms of the order of l/T. 

As the typical variations are a(l/T)/l/T = aT/T- 10% and a In T/ 
In T s 2%, and the precision of (Y itself can hardly surpass 2%, the fulfill- 
ment of this requirement is far from trivial. This is why multi-thermogram 
methods, usually based on temperature shifts caused by a variation of the 
heating rate, & play a dominant role. It is a basic advantage of these 
methods that the determination of activation energy (as it is defined here) is 
independent of the transformation mechanism [50,55-591. The connection of 
eqn. (25) with eqn. (28) for any g( (u) and for any a0 fixed transformed 
fraction yields 

P In 2 = C, - 1.05s 
a0 

while the use of eqn. (29) results in 

(33) 

(34) 

where C, and C, are independent of /I and T,,, which denotes the tempera- 
ture where the transformed fraction is a@. If Z = constant it is incorporated 
in the C coefficient and then these equations are the Ozawa and the 
Kissinger plots, respectively, which are seen here to be only different 
approximations of p(E/RT) and are thus equivalent [60]. It is also easily 
verified that the transformed fraction at the maximum transformation rate, 
(Y m, is independent of fl and is thus useful for the determination of 
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activation energy without integrating the thermoanalytical curve. The usual 
criticism that the thermal lag between da/dt and the measured AT invali- 
dates this method will be treated in the Appendix and will be shown to be 
inapplicable to modern thermoanalytical instruments. Using 

da Z ---z-e 
dt P 

-E’RTf( o) (35) 

the maximum condition is 

where the substitution of eqn. (35) and rearrangement yields 

which is reduced with the help of the first term approximation in eqn. (29) 
to 

g( ) dfb) 
a- 

da a, 

+1=0 

This relationship, besides proving that (Y, is independent of jI for any 
process described by eqns. (26) and (27), is also applicable to the direct 
determination of (IL, with 

n-1 

f(a) = n(1 - CX)[ -ln(l - a)] 7 (see eqns. 18 and 26) 

g(a) = [ - ln(l - a)] “’ (see eqns. 25 and 27) 

functions, yielding 

(36) 

(37) 

%I = 1 - i = 0.63 
e 

These results, which were also derived previously [42,61-631, show that 
statements sometimes found in the literature that “the linearity of the 
Kissinger plot shows the applicability of the first-order kinetics” [106] or 
“the Ozawa plot is valid for chemical reactions only” [107] are not substan- 
tiated and the shift of (Y, with /!I which is also sometimes discussed [23a] 
must be insignificantly small. 

The maximum reaction rate is calculated as 

da iIZ 
dt ,,,==ee 

- E/RT, 
(39) 

which is clearly different from the result derived for fixed n th-order chem- 
ical kinetics, cf. eqn. (26), where f( CX) = (1 - a)” and 

da 
- -ql - a)/n 

dt nlar= RT,2 
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These results, i.e., for transformations described by eqns. (18) and (25) under 
linear heating conditions: (a) (Y, = 0.63 (independent of p, n or any other 
parameters), (b) T, is independent of n [which follows directly from eqn. 
(25) by applying point (a)] and (c) the maximum reaction rate is directly 
proportional to the characteristic exponent, n, are also fully confirmed by a 
detailed numerical simulation [64]. 

A comparison of isothermal and non-isothermal temperature shift meth- 
ods is appropriate here. As eqn. (26) is established to be valid in both cases, 
the relation 

da 
In dt (x0 

= In Zf(cv,) - j& W) 

is applicable. In addition, the condition for the maximum isothermal rate is 

(41) 

which is independent of T, i.e., CX, is used in eqn. (40) under any cir- 
cumstances. On the other hand the relationship evident from eqn. (8): 

In taO = C + j& (424 

is also valid with tm. All of these relationships predict the same activation 
energy that is obtained by eqns. (33) and (34) under non-isothermal condi- 
tions. It is evident that a different activation energy can also be defined by 
eqn. (19b). By this definition the isotherms 

In t, = c”+ E,/nRT PW 

result, but owing to eqn. (24) the relationships (33) and (34) also yield E,/n 
in this instance. 

This section should be concluded by emphasizing that peak methods, in 
addition to being so useful and convenient, also give a significant loss of 
information. With the availability of cheap microcomputers it is advisable to 
evaluate the full thermoanalytical curve to establish that the same activation 
energy is really associated with any transformed fraction value, the assumed 
transformation mechanism is in fact valid and the same characteristic 
exponent is determined from different heating rate experiments. If these 
cross-checks are carried out succesfully then a series of different heating rate 
curves can give as reliable a characterization as a series of different tempera- 
ture isotherms, while (Y and da/dt might be determined with better accu- 
racy even faster and the problems of the initial transient and the difficult 
determination of the incubation time are better avoided. This means that 
non-isothermal measurements can be used even for the determination of the 
mechanism of crystallization, in contrast to the belief that it is restricted to 
isothermal methods. only. 



122 

EXPERIMENTAL RESULTS FOR THE CRYSTALLIZATION KINETICS OF DIFFER- 
ENT GLASSES 

This paper does not attempt to cover the vast literature on crystallization. 
Some results on oxide, chalcogenide and metallic glasses are mentioned to 
reveal how and why the general methods outlined in the previous section are 
modified under special circumstances and to investigate whether the same 
kinetic parameters are indeed to be determined from isothermal and non- 
isothermal experiments. 

Oxide glasses 

A basic feature of oxide glasses is the separation of temperature ranges 
for nucleation and growth. Thermal experiments detecting heat evolution 
naturally observe the growth of pre-existing nuclei. If the glasses were 
heated uniformly in the nucleation temperature range and investigated later 
with different heating rates in the growth regime only, then the evaluation 
methods in the previous section can be used without any modifications. As 
the samples are usually heated at the same rate in both regimes they are not 
even equivalent before crystallization and therefore a modification arises 

1631. 
The number of nuclei is described as [68] 

N” = N1 + Nz + N3 (43) 

where N, is the number of bulk nuclei initially present, N2 is that of 
nucleated during heating in the appropriate temperature range and N3 is the 
number of surface nuclei treated separately. If Ni z+ N2 (“nucleated glass”) 
then N, = N1 is independent of j3 and the usual equations can be used. If 
N, +z Nz (“as-quenched glass”), then 

where T, and T2 are the lower and higher limits of the nucleation tempera- 
ture range, respectively, and crystallization is observed at T > T2. Under 
these circumstances 

and through eqn. (12) 

z z p-l/II 

is obtained, which modifies eqns. (30)-(34) to 

ln[-h-1(1 -ci)] = -(n+l) In B-l.O5~2+~ +C 

(46) 

(47) 
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P 
,I + 1 

:I,-_= 
E 1 

T 211 
% 

C2-RT,0 
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(48) 

(50) 

Surface nucleation was shown to follow fixed-order chemical kinetics [eqn. 
(5)] and therefore an apparent order n = 1 is expected here. 

The applicability of these relationships was carefully tested for LiO, - 2Si0, 
glasses [53,69-731. It was verified that ln[ -ln(l - (Y)]vs. In p with T = 
constant yields ca. 3 and ca. 4 for the nucleated and as-quenched glass, 
respectively [eqn. (30) with Z = constant and eqn. (47)] [53]. It was also 
established that the activation energies determined from eqns. (33) and (49) 
are in good agreement with that of viscous flow. Similar agreement is also 
reported for the surface nucleated case [72,73], where the exponent n = 1 is 
observed. (Correspondence of the activation energies of surface and bulk 
crystallization was also verified for metallic glasses [74].) These results are 
also substantiated by independent observations [75,76]. Equations (30)-(34) 
are also found to be applicable to the crystallization of CaO-SiOz based 
glasses [77,78] and good agreement with isothermal values was reported for 
GeO, and 3BaO * 5Si0, also [79]. 

In the original publications [53,68,69-73,75-791, eqns. (30)-(34) and 
(47)-(50) were derived by an irregular procedure, either assuming the 
validity of the JMAKY kinetics [eqn. (S)] under non-isothermal conditions, 
or using the extremely rough e’kyle(E’RT) j p ( E/R T) approximation. These 
doubtful procedures do in fact lead to some ambiguous results, e.g., to the 
suggestion of an evaluation method for DDTA curves [8] that is not yet 
derived from correct principles [29] and to a modified exponent in eqn. (50) 
where T,‘, is calculated instead of the correct Ta:,“. This latter problem is 
irrelevant, however, as the variation of p is dominant and in fact both 
methods, eqns. (49) and (50) yield to a good approximation the same 
[n/( n + l)]( E/R) value [73]. 

It is emphasized here that eqns. (30)-(34) and (47)-(50) have now 
calculated from correct premises [63] and found to be experimentally appli- 
cable in some instances. The basic reason for the modification apparent in 
eqns. (47)-(50) should, however, be understood: it is only a correction due 
to the unequal heating rates applied in the nucleation range, resulting in 
samples with unequal kinetic parameters. 

Metallic glasses 

For metallic glasses the difference between the glass transition tempera- 
ture, Tg, and that of crystallization, T,,, is very small; in many instances Tp 
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is not even observed, being overlapped by T,,. Under these circumstances a 
separate temperature regime for nucleation cannot be defined. A general 
equation for the activation energy was suggested by Von Heimendahl and 
co-workers [80-821 

where a = 0 for quenched-in nuclei and a = 1 for a constant isothermal 
nucleation rate, m is the number of growth dimensions and b = 1 for linear 
and l/2 for parabolic growth. The activation energies of nucleation, E,, and 
growth, E,, were separately determined by transmission electron mi- 
croscopy, and ,!? predicted by eqn. (51) was in good agreement with that 
determined by the usual methods. As a high value is obtained for E,, it is 
evident that changes in the concentration of the quenched-in nuclei signifi- 
cantly influence i? The effect of quenching rate on crystallization has been 
experimentally verified for a series of Fe-B glasses [89]. This fact makes the 

TABLE 2 

Comparison of activation energies determined by isothermal and non-isothermal methods 

Isothermal Non-isothermal 

Eqn. Ref. E(k.I mol-‘) Eqn. Ref. E(kJ mol-‘) 

COX4XPIS 2 42 

COXl &X4 42 

%&‘~~ 19 a 

Pd xoGezo 42 

(Aus~Cu,~),&Ge,4 42 

Zr75 Pt 25 40 
Ni,,,Nb,,, h.’ 42 

Al 23Te7, 40 

(CJeSe,),,,(Sb,Te,)zo(GeTe),, 40 

42 
42 
42 
42 
42 
42 
42 
19a 
42 

83 435 34 
84 426 33 
86 286 33 
85 376 33 
84 385 
27 250 33 = 
89 239 34 
93 240-245 34 
96 231 34 

360 
94 195 34 
94 190 34 
44 221 34 
90 212 34 
91 250 34 
95 339 34 
92 629 34 

433 
100 270 34 

99 176 34 

83 448 
87 429 
87 270 

87 367 

27 250 
89 240 
93 243 
96 244 

355 
94 213 
94 221 
44 227 
90 218 
91 240 
95 325-345 
92 626 

446 
100 270 

99 168 

.’ Refined Ckawa plot [59] for different transformed fractions and detailed analysis of the full 
dn/dt curve [65-671. 

” Different stages of the transformation evaluated separately. 
Transformed fraction determined from electrical resistance. 
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comparison of results obtained on different ribbons very difficult and can 
even contribute to the significant dispersion obtained on different batches of 
nominally similar samples [SS]. Despite these difficulties, there are many 
examples in the literature where an acceptable agreement was observed 
between activation energies obtained by isothermal and non-isothermal 
methods (Table 2). It is only remarked here that agreement is found both for 
metallic and chalcogenide glasses and for a wide variety of a and b 
parameters. n = 3 is observed for Fe,5B,, and n < 3 is established for 
FesoBZO, which indicates the dominant role of the quenched-in nuclei. On 
the other hand, n z 4 is found for Fe,Ni,P,,B,, which indicates linear 
growth with concurrent nucleation, whereas parabolic growth is applicable 
to Fe,,Ni,,Cr,,P,,B, [80]. 

There are only a few instances where the characteristic exponent is 
determined by non-isothermal methods. Good agreement with the isother- 
mally determined values was reported for Pd-Be [97] and Pd-B [98], where 
a combination of eqns. (31) and (33) was used, and for Fe,,B,,, where a 
detailed evaluation of the full da/dt curve was utilized [27]. 

This section is concluded by mentioning an interesting piece of evidence 
on the fundamental problem of non-isothermal evaluation. The basic as- 
sumption of the usual formalism (which in our case is a direct consequence 
of the well established theory of nucleation and growth controlled trans- 
formations) is that the rate equation is of the same form for both isothermal 
and non-isothermal measurements. It was actually tested for (GeSe,),, 
(GeTe), glasses with eqn. (40) and the two sets of measurements were 
found to merge into a common plot [loll. This result is direct experimental 
proof of the validity of the isokinetic hypothesis and shows that the 
alternative formalism, where the rate equation is modified under non-iso- 
thermal conditions, is inapplicable. 

CONCLUSION 

A progress report has been given on the investigation of crystallization in 
the solid state. It was concluded that a non-isothermal generalization of the 
laws describing nucleation and growth controlled transformations is only 
possible along the lines of the isokinetic hypothesis. The alternative for- 
malism, where the transformed fraction is invariant and the rate equation is 
modified under non-isothermal conditions, is in contradiction with both the 
general theory and the experiments. , 

Different methods were reviewed for the isothermal and non-isothermal 
determination of the kinetic parameters. It was established that the usual 
precision makes the simultaneous determination of all kinetic parameters 
from a single non-isothermal experiment very problematic. In addition to 
methods that are capable of determining nE only, special attention was paid 
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to the determination of E using temperature shift methods. For a linear 
heating experiment the transformed fraction at the maximum rate is always 

% = 1 - l/e = 0.63, and is independent of any experimental parameter. The 
Ozawa and Kissinger methods are thus equivalent and both are generally 
valid if otherwise identical samples are heated at different rates in their 
transformation region. In addition to the different quenching rates, the 
different heating rates in the nucleation region may also result in systemati- 
cally different samples and then an appropriate correction is necessary. 

Experimental results for oxide, chalcogenide and metallic glasses clearly 
illustrate that identical kinetic parameters can be determined from both 
isothermal and dynamic experiments in many instances. 
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APPENDIX: EFFECT OF EXPERIMENTAL THERMAL LAG ON MAXIMUM RATE 
METHODS 

As the temperature at which the transformation rate is maximal is usually 
determined by thermal methods, the reliability of this determination was 
seriously questioned [102] owing to the finite thermal inertia of any measur- 
ing system. While it was shown in some recent publications [103-1051 that 
this negative conclusion is exaggerated, the actual calculation is given here 
to show the real figures. 

If we assume the basic DTA equation in the simplified form: 
&= -ATK/AH-~TC,/AH 

(neglecting terms arising from experimentally unbalanced conditions for 
non-stationary calorimetry in the twin arrangement), then AT can be 
routinely expanded into a Taylor series around To where AT is maximal: 

AT=ATo+~~~~r(T-To)+~(T-2q)2 +... 
0 dT2 

As AT is maximal at To, 
dAT 
dT r=rO=’ 

Introducing the notation 

D 
2 

= d2AT 
dT2 rsr, 

liT=(T-T,)D,j3 

ii~=~,p~ 
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the temperature of the maximum transformation rate is determined by 

AH~~=o=(-KAT-c,BT)I,_~~= -K(T,-T,)D,P-C,D,P~ 

yielding T, = To - C’P/K. 
When the activation energy is determined by plotting In /3 vs. l/T,, then 

l/T, = (VT,)/@ - C,B/T,K) = l/T,@ + C’P/T,K) 

Parameters typical of, e.g., the Perkin-Elmer DSC-2 are 5 mg Fe,,B,, 
(C,=2.5 mJ K-l), T,= 700 K, K= 10 mJ K-’ s-l, p=O.l5 K s-l, thus 
CJ?/T,K = 5 x 10e5, which is negligible. Even in typical macro-DTA with a 
300 mg sample and K = 20-50 mJ K- ’ s- ’ the order of magnitude of the 
correction never exceeds 10p3, which is still negligible. 
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